Computer simulations of hard pear-shaped particles

F. Barmes, ${ }^{1,2}$ M. Ricci, ${ }^{2}$ C. Zannoni, ${ }^{2}$ and D. J. Cleaver ${ }^{1}$
${ }^{1}$ Materials Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
${ }^{2}$ Dipartmento di Chimica Fisica ed Inorganica, Università di Bologna, 40136 Bologna, Italy
(Received 10 April 2003; revised manuscript received 6 June 2003; published 28 August 2003)

Abstract

We report results obtained from Monte Carlo simulations investigating mesophase formation in two model systems of hard pear-shaped particles. The first model considered is a hard variant of the truncated Stoneexpansion model previously shown to form nematic and smectic mesophases when embedded within a 12-6 Gay-Berne-like potential [R. Berardi, M. Ricci, and C. Zannoni, ChemPhysChem 7, 443 (2001)]. When stripped of its attractive interactions, however, this system is found to lose its liquid crystalline phases. For particles of length to breadth ratio $k=3$, glassy behavior is seen at high pressures, whereas for $k=5$ several bilayerlike domains are seen, with high intradomain order but little interdomain orientational correlation. For the second model, which uses a parametric shape parameter based on the generalized Gay-Berne formalism, results are presented for particles with elongation $k=3,4$, and 5 . Here, the systems with $k=3$ and 4 fail to display orientationally ordered phases, but the system with $k=5$ shows isotropic, nematic and, unusual for a hardparticle model, interdigitated smectic A_{2} phases.

DOI: 10.1103/PhysRevE. 68.021708
PACS number(s): 61.30.Gd, 61.20.Ja, 61.30.Cz

I. INTRODUCTION

In recent years, flexoelectricity has become an increasingly important feature in the design of materials for use in liquid crystal devices. Flexoelectric behavior, which leads to field-induced director distortion, results, at a molecular level, from competition between electric and steric dipolar interactions. As well as leading to modified bulk properties, flexoelectricity has been mooted to be a possible driver for switching in devices with bistable anchoring surfaces [1]. Indeed, it has been suggested that the switching mechanism of the zenithally bistable device [2] may rely, in part, on flexoelectric behavior.

The early studies of Meyer [3] and Prost and Marcerou [4], showed that the mechanisms underlying flexoelectricity can be understood in two ways. In the original explanation from Meyer, flexoelectric behavior was explained in terms of particles with a strong anisotropy in their charge repartition. Thus, it was shown that, upon polarization by an applied field, pear-shaped particles exhibit a splay director distortion, whereas banana-shaped particles exhibit a bend distortion. Subsequently, Prost and Marcerou showed that flexoelectricity could also be obtained using particles with a nonzero quadrupole moment. This did not contradict Meyer's original work, however, since in reality flexoelectric mesogens are known to possess either one or both of these properties [5].

Although well studied theoretically [6-8], few computer simulations using flexoelectric particles have been performed to date. While particle based simulations showing ferroelectric behavior are reasonably well established (see, e.g., Refs. [9,10$]$), models with the dipolar and/or quadrupolar symmetry steric interactions needed for flexoelectric behavior are relatively scarce.

Neal and co-workers performed one such study using molecules represented by rigid assemblies of three GayBerne sites [11]. One of the assemblies considered in Ref.
[11] was a triangular arrangement of mutually parallel GayBerne sites, leading, overall, to approximately pear-shaped molecules. On compression, a system of such molecules ordered from an isotropic liquid to a smectic arrangement in which the molecular orientations in successive layers were almost perfectly antiparallel. Subsequently, Stelzer et al. [12] investigated the behavior of pear-shaped molecules using a model with two interaction sites per particle; each particle comprised a Lennard-Jones site embedded near to one end of a Gay-Berne site. Isotropic, nematic, and smectic phases were observed, local antiparallel alignment being seen in the nematic phase. Measurements of the splay and bend flexoelectric coefficients gave a nonzero splay coefficient and, to within error estimates, a zero bend coefficient in accordance with Meyer's theory. Similar simulations by Billeter and Pelcovits [13], using qualitatively the same model but with different energy parametrizations and an alternative method for the calculation of the flexoelectric coefficients, confirmed the results of Ref. [12]. In this case, however, no stable nematic phase was found between the isotropic and (locally antiparallel) smectic A phases.

Whilst the results from these systems proved encouraging, their reliance on multisite generic potentials remained a relative inefficiency. This was resolved somewhat in recent work by Berardi and some of the current authors [14], in which a single-site model was developed, using Zewdie's generalization approach $[15,16]$, to represent tapered or pear-shaped particles. Here, using the geometrical shape of a Bézier curve as a template for the particle shape, a numerically calculated mesh of contact distance values was fitted using a truncated Stone expansion which, in turn, was employed in the simulations themselves. Results from this study were very encouraging, as both nematic and smectic A phases were found, and, through appropriate manipulation of the well-depth anisotropy terms, equivalent phases with net polar order were generated.

In this paper, we seek to explore the fundamental properties of single-site pear-shaped models such as that used in Ref. [14], by investigating mesophase formation in systems of hard, noncentrosymmetric particles. Hard-particle simulations have proved to be an effective and efficient testbed for many of the theories of liquid crystal physics [17], and have confirmed that shape anisotropy alone can be sufficient for the onset of nematic and even smectic order. Two distinct systems are described here. The first is a hard version of the truncated Stone expansion potential described in Ref. [14]. The second employs a novel approach, based on a parametric variant of the generalized Gay-Berne shape parameter [18], which yields an analytical expression for the contact distance between two pear-shaped objects.

The content of the remainder of this paper is arranged as follows. In Sec. II A we give a brief description of the truncated Stone-expansion potential before presenting and discussing results obtained from Monte Carlo simulations of same. In Sec. II B we introduce the parametric approach for generating shape parameters for nonellipsoidal particles, and apply it to generate shape parameters for the Bézier pears considered in Ref. [14]. Results obtained from Monte Carlo simulations of such systems are presented in Sec. II B 3. Finally, the two sets of simulations are compared and discussed in Sec. III.

II. SIMULATIONS OF HARD PEARS

A. The truncated Stone expansion model

1. Model details

Our first simulations of hard pear-shaped particles used a steric version of the potential described in Ref. [14]. This gives the interaction between two particles, i and j, as

$$
\mathcal{V}^{H P}=\left\{\begin{array}{lll}
\infty & \text { if } & r_{i j}<\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) \tag{1}\\
0 & \text { if } & r_{i j} \geqslant \sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right),
\end{array}\right.
$$

where $\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right)$ represents the contact distance between two pear-shaped particles with orientations $\hat{\mathbf{u}}_{i}$ and $\hat{\mathbf{u}}_{j}$ and $\hat{\mathbf{r}}_{i j}=\mathbf{r}_{i j} / r_{i j}$ and $\mathbf{r}_{i j}$ is the intermolecular vector. Following the approach of Zewdie $[15,16]$, this contact distance was expressed as an expansion of the form

$$
\begin{align*}
\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) & \simeq \mathcal{L}\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) \\
& =\sum_{L_{1}, L_{2}, L_{3}} \sigma_{L_{1}, L_{2}, L_{3}} S^{* L_{1}, L_{2}, L_{3}}\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) \tag{2}
\end{align*}
$$

where $S^{L_{1}, L_{2}, L_{3}}$ is a Stone function [19], and the expansion coefficients $\sigma_{L_{1}, L_{2}, L_{3}}$ are given by

$$
\begin{equation*}
\sigma_{L_{1}, L_{2}, L_{3}}=\frac{\int \mathcal{L}\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) S^{L_{1}, L_{2}, L_{3}}\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) d \hat{\mathbf{u}}_{i} d \hat{\mathbf{u}}_{j} d \hat{\mathbf{r}}_{i j}}{\int S^{* L_{1}, L_{2}, L_{3}}\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) S^{L_{1}, L_{2}, L_{3}}\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right) d \hat{\mathbf{u}}_{i} d \hat{\mathbf{u}}_{j} d \hat{\mathbf{r}}_{i j}} \tag{3}
\end{equation*}
$$

Simulations were performed with two parametrizations of this model, with length to breadth ratio, k, of 3 and 5, respectively. In both cases the shape parameter expansion (2) was restricted to indices $\left\{L_{1}, L_{2}, L_{3}\right\}=1, \ldots, 6$; the expansion coefficients used for $k=3$ were identical to those given in Ref. [14], while those for $k=5$ are listed in Table I.

2. Simulation results

Our first simulations were performed on a system of 1250 particles with elongation $k=3$ using constant NPT Monte Carlo (MC) techniques. This system was chosen since it was shown in Ref. [14] that the attractive version of this model with elongation $k=3$ has isotropic, nematic and smectic phases. In addition to the normal positional and orientational MC moves, one fifth of the attempted particle moves were orientation inversions, implemented through the reversal of the appropriate $\hat{\mathbf{u}}_{i}$ vector. Volume change moves were attempted, on average, once every two MC sweeps, where one sweep represents one attempted move per particle in the system. Within these volume change moves, each box dimension was allowed to change independently so as to minimize the influence of the periodic boundary conditions during the formation of possible smectic phases [20]. Typically, run
lengths of $0.5-1.0 \times 10^{6} \mathrm{MC}$ sweeps were used for equilibration and production phases, but at the highest densities considered, equilibration runs were extended up to 5 $\times 10^{6} \mathrm{MC}$ sweeps. Two separate simulation sequences were performed. The first was a compression sequence starting

TABLE I. The nonzero $\sigma_{L_{1}, L_{2}, L_{3}}$ coefficients for the Stoneexpansion model and $k=5$.

$[000]$	1.90456	$[011]$	0.51113	$[101]$	0.51113
$[022]$	2.01467	$[202]$	2.01467	$[033]$	-0.11376
$[303]$	-0.11376	$[044]$	0.91479	$[404]$	0.91479
$[055]$	-0.29937	$[505]$	-0.29937	$[066]$	0.41523
$[606]$	0.41523	$[110]$	-0.03942	$[121]$	-0.45400
$[211]$	-0.45400	$[123]$	0.59579	$[213]$	0.59579
$[132]$	0.17137	$[312]$	0.17137	$[143]$	-0.27083
$[413]$	-0.27083	$[220]$	-0.56137	$[222]$	-2.78379
$[224]$	2.41676	$[231]$	0.31104	$[321]$	0.31104
$[233]$	0.45382	$[323]$	0.45382	$[242]$	0.38115
$[422]$	0.38115	$[244]$	-1.69388	$[424]$	-1.69388
$[246]$	1.40664	$[426]$	1.40664	$[330]$	-0.07836
$[440]$	-0.17713	$[442]$	-0.52246		

FIG. 1. Results from constant $N P T$ simulations of the truncated Stone-expansion model obtained using $k=3(\mathrm{a}, \mathrm{b})$ and $k=5(\mathrm{c}, \mathrm{d})$. The curves for $k=3$ and $k=5$ correspond, respectively, to system sizes of $N=1250$ and N $=1000$.
from a low density phase with a fully isotropic initial distribution of particle orientations. The second was an expansion sequence, the starting configuration for which was generated by taking a high density configuration obtained from the compression sequence and inducing the particle axes to align with the $(0,0,1)$ direction. This was achieved by applying a uniform field with this orientation to the system and assuming a strong molecular coupling via a positive dielectric anisotropy.

The equation of state and nematic, $\left\langle P_{2}\right\rangle$, and polar, $\left\langle P_{1}\right\rangle$ order parameter data [21] obtained from these simulations are shown in Fig. 1(a). Surprisingly, the results obtained from the compression sequence show no spontaneous ordering, and at all densities $\left\langle P_{2}\right\rangle$ falls short of the values typical of a nematic phase. In contrast, the expansion sequence (with a field-aligned initial configuration) performed on this system has some reasonably high $\left\langle P_{2}\right\rangle$ values, consistent with nematic order being present at the higher densities considered. The discrepancy between these two sets of order parameter values is also seen in the equation of state data and indicates a failure of this system to equilibrate at densities $\rho^{*}>0.30$. We return to the causes of this nonequilibration below.

An equivalent compression sequence was performed using a system of 1000 particles with elongation $k=5$. This system was studied since increasing particle shape anisotropy generally promotes mesophase formation. While the equation of state data obtained for this system showed a slight inflection and $\left\langle P_{2}\right\rangle$ attained values of 0.3 [Fig. 1(d)], the behavior expected for an isotropic-nematic transition was again absent. Configuration snapshots from high density runs performed using this system (e.g., Fig. 2) showed that the modest order parameter values resulted from the formation
of numerous bilayerlike domains. While the local order within these domains was very high, orientational correlations between the domains were weak. This multidomain structure persisted even when runlengths were extended significantly.

The failure of these hard-particle systems to reproduce the density-driven nematic-isotropic transition shown by the equivalent soft particle model is a surprising result; by contrast, the nematic-isotropic transition densities of the hard

FIG. 2. (Color online) Configuration snapshot for the truncated Stone-expansion model with $k=5$ and $P^{*}=2.5$. Color coding indicates orientations.

FIG. 3. Particle mean square displacement curves obtained for the truncated Stone-expansion model with $k=3$ and $k=5$. These data were obtained from constant $N V T$ MC simulations. One sweep corresponds to N attempted Monte Carlo moves.

Gaussian overlap model [22] are virtually identical to those of the equivalent (soft) Gay-Berne systems [23,24]. Indeed, the failure of our hard pear systems to form nematic phases could be taken as an indication that particle shape did not contribute significantly to the mesophase formation processes seen in Ref. [14]. To assess both this and the non-

(a) Parallel particles.

(c) Parallel particles.
equilibration noted above, we have measured the particle mobility in our systems by computing the mean square displacement

$$
\begin{equation*}
\left\langle\delta r^{2}(n)\right\rangle=\left\langle\left(\mathbf{r}_{n}-\mathbf{r}_{0}\right)^{2}\right\rangle, \tag{4}
\end{equation*}
$$

(b) Antiparallel particles.

(d) AntiParallel particles.

FIG. 4. Contact surfaces for the truncated Stone-expansion model with $k=3(\mathrm{a}, \mathrm{b})$ and $k=5(\mathrm{c}, \mathrm{d})$.
where $\mathbf{r}_{n}-\mathbf{r}_{0}$ is the displacement vector moved by a particle in n consecutive MC sweeps and the angular brackets indicate an average over all particles and the run length. In MC simulations with fixed maximum particle displacement, Brownian diffusion dictates that $\left\langle\delta r^{2}(n)\right\rangle$ should increase linearly with n in a fluid phase. Instead, the $\left\langle\delta r^{2}(n)\right\rangle$ data for $k=3$ [Fig. 3(a)], show that, as the density was increased, the mobility of the particles decreased dramatically, indicating the onset of glassy behavior. This observation is certainly consistent with our earlier conclusion that equilibration was not achieved at high densities; for both of our simulation sequences for $k=3$, the sampling of configuration space will have been poor for $\rho^{*} \geqslant 0.30$. For the $k=5$ system, the measured mobility again showed a marked decrease with increase in density, although it did not reach the very low levels found at $k=3$ [Fig. 3(b)]. We note, however, that $\left\langle\delta r^{2}(n)\right\rangle$ does not distinguish between single particle diffusion and en-masse mobility of larger assemblies such as the bilayer domains seen in Fig. 2.

The low mobilities found at high densities in these systems can be explained by considering details of the shape parameters obtained by truncating expansion (2) at $\left\{L_{1}, L_{2}, L_{3}\right\}=1, \ldots, 6$. To illustrate this, we show, in Fig. 4, sample shape parameters for parallel and antiparallel particle configurations (i.e., $\left(\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}\right)=-1$ and 1) for both $k=3$ and $k=5$. These reveal that the contact functions used in our simulations were not purely convex, as had been supposed, but had significant ridges. We suggest that in our $k=3$ simulations, these nonconvex features were sufficient to prevent particles from sliding past one another and so gave rise to locked configurations. For the $k=5$ particles, for which strong local ordering was achieved, we note that the shape parameter for antiparallel particles [illustrated in Fig. 4(d)] has an equatorial ridge which presumably leads to the interlocked bilayer structures so prevalent in Fig. 2.

These problems are similar to those encountered in Ref. [25] where simulations were performed using a seven site linear hard sphere chain (LHSC) model. This model was found to form metastable glassy states in the vicinity of the isotropic-nematic transition due to the nonconvex shapes of the particles which inhibited their ability to slide past one another. The tendency of these systems to become irretrievably interlocked was overcome in Ref. [25] by the use of reptation moves. This solution was not available to us here, however, since ours is a single-site model.

Once in a stable nematic phase, the LHSC model proved to be reasonably well behaved, exhibiting a stable nematic region and undergoing a reversible nematic-smectic A transition. This raises the question of whether the glassy behav-
ior we have observed here is simply a simulation bottleneck associated with the isotropic-nematic transition or a genuine pre-empting of the nematic phase by a glass. While we are not in a position to give a categorical answer to this question, the evidence we do have suggests the latter to be the case. All of our $k=3$ simulations with $\rho^{*}>0.30$ (i.e., those in both the compression and expansion sequences) had low particle mobilities, the effective diffusion coefficient decreasing monotonically with increase in applied pressure. This indicates that if there is a region of fluid, nematic phase stability, it lies beyond the pressure values considered here; we have certainly found no evidence that the nematic phase seen in Ref. [14] is preserved when the $k=3$ model is stripped of its attractive interactions. From this change of phase behavior, we infer that, for this system, the presence of attractive interactions affects the local packing of the particles-the attractive wells, being located at $r>\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right)$, provide a means by which the particles can escape from the interlocked arrangements that dominate the equivalent hard particle system at high densities. We are not aware of any other model system for which both shape anisotropy and attractive interactions are required to promote a nematic-isotropic transition. For the $k=5$ hard particle system, while the measured mobility did decrease with increase in density, it did not drop as far as that found at $k=3$. That said, the tendency of this system to form local bilayerlike packing arrangements is in conflict with the usual mechanisms of nematic phase formation (e.g., diverging orientational correlations), leading us to conclude that here, too, the nematic phase is probably never stable.

Faced with this unexpected phase behavior, we present, in the following section, an alternative, parametric approach to developing noncentrosymmetric single-site models. By applying this approach to the Bézier pears used as a basis for the truncated Stone-expansion models used in this section, we then derive a series of pear-shaped models for different particle elongations and perform MC simulations to investigate their ability to form mesophases.

B. The parametric hard Gaussian overlap model

1. Computation of the contact distance

We start with the generalized expression for the shape parameter that governs the interaction between a pair of uniaxial, but nonidentical, ellipsoidal gaussians [18]. This expression, which itself is an approximation to the hard ellipsoid contact function for nonidentical ellipsoids [26], gives the contact distance between particles i and j of elongations l_{i}, l_{j} and breadths d_{i}, d_{j} as

$$
\begin{equation*}
\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right)=\sigma_{0}\left[1-\chi\left\{\frac{\alpha^{2}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)^{2}+\alpha^{-2}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{j}\right)-2 \chi\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{j}\right)\left(\hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}\right)}{1-\chi^{2}\left(\hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}\right)^{2}}\right\}\right]^{-1 / 2} \tag{5}
\end{equation*}
$$

with

$$
\sigma_{0}=\sqrt{\frac{d_{i}^{2}+d_{j}^{2}}{2}}
$$

$$
\begin{gathered}
\alpha^{2}=\left[\frac{\left(l_{i}^{2}-d_{i}^{2}\right)\left(l_{j}^{2}+d_{i}^{2}\right)}{\left(l_{j}^{2}-d_{j}^{2}\right)\left(l_{i}^{2}+d_{j}^{2}\right)}\right]^{1 / 2}, \\
\chi=\left[\frac{\left(l_{i}^{2}-d_{i}^{2}\right)\left(l_{j}^{2}-d_{j}^{2}\right)}{\left(l_{j}^{2}+d_{i}^{2}\right)\left(l_{i}^{2}+d_{j}^{2}\right)}\right]^{1 / 2} .
\end{gathered}
$$

If, alternatively, brackets containing the length and breadth values are grouped as

$$
\begin{array}{ll}
A=\left(l_{i}^{2}-d_{i}^{2}\right), & B=\left(l_{j}^{2}-d_{j}^{2}\right) \\
C=\left(l_{j}^{2}+d_{i}^{2}\right), & D=\left(l_{i}^{2}+d_{j}^{2}\right)
\end{array}
$$

the shape parameter can be rewritten as

$$
\begin{equation*}
\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right)=\sigma_{0}\left[1-\frac{A C\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)^{2}+B D\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{j}\right)^{2}-2 A B\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{j}\right)\left(\hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}\right)}{C D-A B\left(\hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{u}}_{j}\right)^{2}}\right]^{-1 / 2} \tag{6}
\end{equation*}
$$

In practice, this form, being free of possible division by zero or complex numbers, is better suited for implementation in computer simulation codes.

The limitation of expression (6) is that it is restricted to particles with ellipsoidal symmetry. The thrust of this section is to illustrate that, since Eq. (6) is valid for any set of particle axis lengths $l_{i}, l_{j}, d_{i}, d_{j}$, it can also be used for some situations in which these axis lengths, rather than being held fixed, are allowed to vary parametrically.

As an illustration of this, we consider the properties of a pear-shaped particle. When its sharp end interacts, it resembles a particle with a relatively large $/ / d$ ratio, whereas its blunt end corresponds to an l / d ratio rather nearer to unity. In generating smooth variation between these two limiting cases, a multitude of parametric forms is possible: here we restrict ourselves to making l_{i} and d_{i} simple polynomials of the polar angle $\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)$, that is

$$
\begin{equation*}
d_{i}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)=a_{d, 0}+\cdots+a_{d, n}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)^{n} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
l_{i}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)=a_{l, 0}+\cdots+a_{l, m}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)^{m} \tag{8}
\end{equation*}
$$

While this restriction limits, to some extent, the range of particle shapes available, it has the advantage that the effect of this parametric approach on $\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right)$ is transparent: through the coefficients A, B, C, and D, it simply introduces higher order dependence of $\sigma\left(\hat{\mathbf{u}}_{i}, \hat{\mathbf{u}}_{j}, \hat{\mathbf{r}}_{i j}\right)$ on the scalar products $\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)$ and $\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{j}\right)$. On a more practical level, we note that restricting the shape parameter expansion to polynomials in these dot products has the benefit of making it readily usable in a molecular dynamics (MD) simulation. To reflect the generalization introduced by this approach, we name the resultant class of models the parametric hard Gaussian overlap (PHGO).

As we show in the following sections, by working through a specific example, this parametric approach can be used to generalize the HGO model to give shape parameters
that approximate other convex and axially symmetric particle shapes. We note, however, that since the PHGO's departure from the conventional HGO shape parameter is based, in part, on the interparticle vector $\mathbf{r}_{i j}$, it ignores some possible close contacts and is not, therefore, suitable for modeling particles with concave surface regions (e.g., dumbbells). For systems that do satisfy the convexity criterion, however, the approximations inherent in the PHGO approach are outweighed by the advantages: it yields an analytical form for the shape parameter, making it suitable for either MC or MD simulation and is easy to embed into a Gay-Berne type model; it introduces little computational overhead, beyond that required to simulate the standard HGO model; and, since it is a simple generalization of the HGO model, it can readily be used to represent some or all of the particles in a multicomponent mixture or a multisite model (indeed, extension to polydispersity and/or dynamic particle shape variation is quite straightforward).

2. Parametrizing Bézier pears

In order to test the PHGO approach, we have used it to generate shape parameters for pear-shaped particles based on Bézier-curves (i.e., the same target system as was employed in Ref. [14]). For this, the ideal particle shape was first determined geometrically using a combination of two Bézier curves as shown in Fig. 5. This geometry is very similar to that used in Ref. [14], the exception being that we took points q_{2} and q_{3} to be coincident. This has the advantage of making the Bézier points' coordinates more easily scalable with the desired length to breadth ratio k. The coordinates of the Bézier points used are given in Table II.

From these points, it is possible to extract the coordinates of any point on the curve [27]. By taking these Bézier curves to correspond to the contact surface between a pear shaped particle i and a point probe j [i.e., taking $l_{j}=d_{j}=0$ in Eq. (6)], it can readily be shown that these points need to be fitted by the particle-point shape parameter

FIG. 5. Bézier point geometry corresponding to the pear shape used for the PHGO model. For an elongation $k=3, \sigma_{0}=1.0$, and $h=2.0$.

$$
\begin{align*}
& \sigma\left(\hat{\mathbf{u}}_{i}, \mathbf{r}_{i j}\right) \\
& \quad=\frac{d_{i}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right) l_{i}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)}{\left[l_{i}^{2}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)+\left(\hat{\mathbf{u}}_{i} \cdot \hat{\mathbf{r}}_{i j}\right)^{2}\left\{d_{i}^{2}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)-l_{i}^{2}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)\right\}\right]^{1 / 2}} . \tag{9}
\end{align*}
$$

To achieve this, various polynomial forms were considered for the expansions of $d_{i}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)$ and $l_{i}\left(\hat{\mathbf{r}}_{i j} \cdot \hat{\mathbf{u}}_{i}\right)$ in Eqs. (8), these being fitted numerically using a simplex least squares minimization method [28]. Good fits were obtained by taking eleven terms in the particle breadth polynomial and two in the length polynomial. Full sets of the coefficients obtained are given in Table III for particles with overall aspect ratios $k=3,4$, and 5 .

In order to assess the accuracy of this fitting procedure, we present in Fig. 6 a plot comparing the target Bézier curve and the corresponding fitted shape parameter for $k=5$. The strong correspondence between these datasets, while encouraging, does not guarantee that the particle-particle potential will be as required. To assess this more fully, we computed the contact surfaces between two pears as a function of $\hat{\mathbf{r}}_{i j}$ uniformly distributed on the unit sphere. For this, the orientations $\hat{\mathbf{u}}_{i}$ and $\hat{\mathbf{u}}_{j}$ were held fixed and the three cases $\hat{\mathbf{u}}_{i}=\hat{\mathbf{u}}_{j}$ $=(0,0,1), \hat{\mathbf{u}}_{i}=-\hat{\mathbf{u}}_{j}=(0,0,1)$, and $\hat{\mathbf{u}}_{i}=(0,0,1), \hat{\mathbf{u}}_{j}=(0,1,0)$ were considered. The parallel and antiparallel surfaces are shown for $k=5$ in Figs. 7(a) and 7(b). As required, an approximately ellipsoidal contact surface is obtained when the two particles are parallel, and a pear shape when they are

TABLE II. Coordinates for the pear-shaped Bézier points used for the PGHO model.

q	x	y
q_{1}	$-\frac{1}{2} \sigma_{0}$	0.0
q_{2}, q_{3}	0.0	$\frac{2}{3} k \sigma_{0}$
q_{4}	$\frac{1}{2} \sigma_{0}$	0.0
q_{5}	1.0	$-\frac{2}{3} k \sigma_{0}$
q_{6}	-1.0	$-\frac{2}{3} k \sigma_{0}$

TABLE III. Values of $a_{d, \alpha}$ and $a_{l, \alpha}$ for the PHGO model with $k=3,4$, and 5

	$k=3$	$k=4$	$k=5$
$a_{d, 0}$	0.501852454	0.501377232	0.497721868
$a_{d, 1}$	-0.141145314	-0.129608758	-0.123155821
$a_{d, 2}$	-0.060542359	-0.074219217	0.024405876
$a_{d, 3}$	0.225813650	0.484166441	0.723627215
$a_{d, 4}$	0.832274021	0.923492941	0.389831429
$a_{d, 5}$	-1.015039575	-1.987232902	-3.018638148
$a_{d, 6}$	-2.504045172	-2.943008017	-1.951629076
$a_{d, 7}$	1.375313426	2.808075172	4.413215403
$a_{d, 8}$	3.196830129	3.815344782	2.998417509
$a_{d, 9}$	-0.699241457	-1.426641750	-2.241573216
$a_{d, 10}$	-1.430400139	-1.682476460	-1.416614353
$a_{l, 0}$	1.498259615	1.995906501	2.493069403
$a_{l, 1}$	-0.002027616	-0.004518187	-0.008067236

antiparallel. The orthogonal case (which is not shown since it is rather unprepossessing) is a more severe test since here the point of contact is often well away from the line of centers. We have found that this case gives an asymmetrical lobe shape, which we have found to be consistent with the equivalent surface given by the models of Ref. [14]. Importantly, we note that all three of the PHGO contact functions considered in this way are almost perfectly convex, and, so, should not be prone to the locking-up suffered by the truncated Stone function expansion models simulated in Sec. II A. In the following section, we go on to investigate both this assertion and the general applicability of our parametric models to molecular simulation by performing constant NPT Monte Carlo compression sequences on PHGO pear systems with $k=3,4$, and 5 .

3. Simulation results

In order to test our models, we have examined their phase behavior via MC simulations in the isothermal-isobaric ensemble using $N=1000$ particles and a series of increasing pressures. Three particle elongations, $k=3,4$, and 5 , have been studied, their phase behavior being assessed through the variation of the number density ρ^{*} and the polar and nematic

FIG. 6. Fit of the PHGO model (line) to the Bézier curve (points) for $k=5$. Equivalent curves for $k=3$ and 4 are similar but with better agreement.

FIG. 7. Contact surfaces for the PHGO model with an elongation $k=5$. For shorter elongations, the shapes are similar but smoother.
order parameters $\left\langle P_{1}\right\rangle$ and $\left\langle P_{2}\right\rangle$, respectively. The volume change scheme used here was the same as that used with the Stone expansion model and typical run lengths were $0.5 \times 10^{6}-1 \times 10^{6}$ for equilibration and production.

The improved equilibration behavior of these systems meant that the very long runs used previously were unnecessary here. The results of these simulations are illustrated by the plots presented in Fig. 8. For the sake of brevity, results for the $k=3$ system are not shown here since they are qualitatively the same as those found for $k=4$.

The behavior of the order parameters for the two lower values of k indicates that there was no long range orienta-
tional ordering for these systems. $\left\langle P_{1}\right\rangle$ remained nearly constant at around 0.0 while $\left\langle P_{2}\right\rangle$ failed to reach the values (>0.6) characteristic of nematic order. However, for both elongations, $P^{*}\left(\rho^{*}\right)$ had an inflection suggesting proximity to a weak phase transition. These features coincided, approximately, with the broad maxima seen in the corresponding $\left\langle P_{2}\right\rangle$ curves. This suggests that even if no nematic phase is shown by these systems, some other high density phase may have been formed here. We note that for these systems the particle mobilities, monitored via their mean square displacements, changed little throughout the density range considered in these simulations.

FIG. 8. Results from constant $N P T$ simulations of the PHGO model obtained with $k=4(\mathrm{a}, \mathrm{b})$ and $k=5(\mathrm{c}, \mathrm{d})$ and system sizes of $N=1000$ particles.

FIG. 9. Pair correlation functions $g_{\perp}^{\mathrm{mol}}\left(r_{\perp}\right)$ and $g_{\|}^{\mathrm{mol}}\left(r_{\|}\right)$resolved parallel and perpendicular to the molecular orientation for PHGO particles with elongation $k=4$.

More insight into the high density arrangements adopted by these systems has been obtained through computation of the pair correlation functions resolved parallel $\left[g_{\|}^{\mathrm{mol}}\left(r_{\|}\right)\right]$and perpendicular $\left[g_{\perp}^{\mathrm{mol}}\left(r_{\perp}\right)\right]$ to the particle orientations $\hat{\mathbf{u}}_{i}$ (the superscript mol is used to indicate that molecular, rather than director orientations were used to calculate these functions). These are shown in Fig. 9 for $k=4$, and indicate local smecticlike arrangements with anti-parallel alignment of nearest neighbors within layers. However, the decay of the oscillations in $g_{\|}^{\mathrm{mol}}\left(r_{\|}\right)$, coupled with the low corresponding $\left\langle P_{2}\right\rangle$ values, indicate the absence of long-ranged smectic order. Configurations snapshots illustrate these structures more clearly. As can be seen from Fig. 10, with $k=4$, upon compression, these systems formed convoluted, space filling bilayer structures, the bilayers being planar in some regions and highly curved in others. The presence of these curved regions makes these systems qualitatively different from those seen in the $k=5$ truncated Stone-expansion model (recall Fig. 2), where the orientations of the bilayer domains changed discontinuously with position.

For the $k=5$ PHGO pear model, a very different situation was found. While $\left\langle P_{1}\right\rangle$ remained resolutely at zero for all densities, confirming an absence of polar order, $\left\langle P_{2}\right\rangle$ showed the well known " S " shape characteristic of an isotropicnematic transition and reached the values expected for an

FIG. 10. (Color online) Configuration snapshots of systems of $N=1000$ PHGO particles with $k=4$ at $P^{*}=1.80$ (a) and 5.00 (b).
orientationally ordered phase. A corresponding plateau in the $P^{*}\left(\rho^{*}\right)$ curve and a configuration snapshot (Fig. 11) confirm this assessment. At higher densities, secondary features are apparent in both $P_{2}\left(\rho^{*}\right)$ and $P^{*}\left(\rho^{*}\right)$, indicating the presence of a second phase transition. The nature of this third phase was determined by computation of the pair correlation functions resolved parallel $\left[g_{\|}\left(r_{\|}\right)\right]$, and perpendicular $\left[g_{\perp}\left(r_{\perp}\right)\right]$ to the director $\hat{\mathbf{n}}$ as shown in Figs. 12(a) and 12(b). These graphs show that for pressures above that of the second phase transition, $g_{\|}\left(r_{\|}\right)$became periodic, indicating the onset of a smectic phase. Moreover, the decay of the oscillations in $g_{\perp}\left(r_{\perp}\right)$ further indicates this to be a smectic A. A snapshot configuration from this high density region confirms this identification, a highly interdigitated bilayer smectic A_{2} phase being seen, in which the molecules in adjacent layers are almost perfectly antiparallel. This antiparallel arrangement is apparent from the peak splitting observed in $g_{\|}\left(r_{\|}\right)$; the short peaks correspond to the distinct natural separations of particles in the two possible antiparallel arrangements. Similar behavior has been observed in simulations of Gay-Berne systems with longitudinal terminal molecular dipoles [29]. Comparison of the $g_{\|}\left(r_{\|}\right)$and $g_{\perp}\left(r_{\perp}\right)$ data obtained at different pressures in the range P^{*} $=2.4-3.8$, shows an interesting compressibility behavior. Upon increasing the pressure in this range, the system density rises and intralayer particle separations decrease slightly but the bilayer separations increase [Figs. 12(a) and 12(b)]. From the measured $g_{\|}\left(r_{\|}\right)$data it is found that the distance between the main peaks, which corresponds to the separation of the bilayers, increases from 7.38 to 7.66 . The distance from the main peak to the first minor peak, which corresponds to the strongly interdigitating "tail-tail" configuration increases from 2.49 to 2.76 , whereas that to the second minor peak, corresponding to the weakly interdigitating 'headhead' alignment remains effectively constant at 4.85 . Thus, the in-plane compression induced by this increase in pressure leads to a 10% increase in the separation within the interdigitated bilayers that comprise the smectic A_{2} phase.

III. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the mesogenic behavior of two classes of model hard pear-shaped particles, both

FIG. 11. (Color online) Configuration snapshots of systems of $N=1000$ PHGO particles with $k=5$ and $P^{*}=1.00$ (a), 1.50 (b), and 2.80 (c).
based on a target shape built using a Bézier curve. The first model considered used a truncated Stone expansion approach to generate the particle-particle contact distance numerically. Although the Gay-Berne version of this model was well behaved, giving nematic and smectic A mesophases [14], these were not found on removal of the attractive interactions. Rather, the nonconvex regions of the contact surfaces induced the particles to interlock, leading to the formation of multidomain and glassy phases. For this model, therefore, it appears that the nematic-isotropic transition is not driven by particle shape alone: long-ranged orientational order is only seen when the shape is softened somewhat, by the incorporation of attractive interactions.

The second hard-pear model considered here was based on the PHGO approach, a route to noncentrosymmetric shape parameters which we have introduced in this paper. While the PHGO shape parameter is not determined from a full evaluation of the appropriate Gaussian integral, the approximation it makes, that locally a noncentrosymmetric particle closely resembles an appropriately chosen ellipsoid, is intuitively reasonable. Furthermore, the computational sim-
plicity and ready transferability of the PHGO model suggest that it may be of considerable utility in the generic modeling of self-assembling systems. Here, we have found that the smooth, convex contact surfaces of a PHGO hard pear model yield stable nematic and bilayered smectic A_{2} phases. Interestingly, these phases are only seen when the particle aspect ratio is increased to $k=5$, whereas hard ellipsoid systems are known to form a nematic with k values as low as 2.75 [30]. Future work exploring the behavior of the PHGO hard pear model will include a more thorough study of its flexoelectric properties, and an investigation into the applicability of the PHGO shape parameter in theoretical approaches commonly used to study liquid crystals.

ACKNOWLEDGMENTS

F.B. acknowledges Sheffield Hallam University's Materials Research Institute for support and the EU for financial support through Contract No. TMR.FMRX CT970121 in respect of extended visits he made to Bologna. D.J.C. thanks Ian Withers for discussions which stimulated the development of the PHGO approach.

FIG. 12. Pair correlation functions $g_{\perp}\left(r_{\perp}\right)$ and $g_{\|}\left(r_{\|}\right)$resolved parallel and perpendicular to the director for PHGO model particles with elongation $k=5$.
[1] A.J. Davidson and N.J. Mottram, Phys. Rev. E 65, 051710 (2002).
[2] G.P. Bryan-Brown, C.V. Brown, I.C. Sage, and V.C. Hui, Nature (London) 392, 365 (1998).
[3] R.B. Meyer, Phys. Rev. Lett. 22, 918 (1969).
[4] J. Prost and J.P. Marcerou, J. Phys. (Paris) 38, 315 (1977).
[5] J.P. Marcerou and J. Prost, Mol. Cryst. Liq. Cryst. 58, 259 (1980).
[6] M.A. Osipov, Zh. Eksp. Teor. Fiz. 85, 2011 (1983) [Sov. Phys. JETP 58, 6 (1983)].
[7] M.A. Osipov, J. Phys. (Paris), Lett. 45, 823 (1984).
[8] I. Dozov et al., J. Phys. (Paris), Lett. 44, L817 (1983).
[9] D. Wei and G.N. Patey, Phys. Rev. Lett. 68, 2043 (1992).
[10] D. Wei and G.N. Patey, Phys. Rev. A 46, 7783 (1992).
[11] M.P. Neal, A.J. Parker, and C.M. Care, Mol. Phys. 91, 603 (1997).
[12] J. Stelzer, R. Berardi, and C. Zannoni, Chem. Phys. Lett. 299, 9 (1999).
[13] J.L. Billeter and R.A. Pelcovits, Liq. Cryst. 27, 1151 (1997).
[14] R. Berardi, M. Ricci, and C. Zannoni, ChemPhysChem 7, 443 (2001).
[15] H. Zewdie, J. Chem. Phys. 108, 2117 (1998).
[16] H. Zewdie, Phys. Rev. E 57, 1793 (1998).
[17] M.P. Allen, G.T. Evans, D. Frenkel, and B. Mulder, Adv.

Chem. Phys. 86, 1 (1993).
[18] D.J. Cleaver, C.M. Care, M.P. Allen, and M.P. Neal, Phys. Rev. E 54, 559 (1996).
[19] A.J. Stone, Mol. Phys. 36, 241 (1978).
[20] H. Domínguez, E. Velasco, and J. Alejandre, Mol. Phys. 100, 2739 (2002).
[21] P. Pasini and C. Zannoni, Advances in the Computer Simulations of Liquid Crystals (Kluwer Academic, Dordrecht, 1998), Chap. 2.
[22] E. de Miguel and E. Martín del Río, J. Chem. Phys. 115, 9072 (2001).
[23] E. de Miguel et al., Mol. Phys. 72, 593 (1991).
[24] E. de Miguel et al., Mol. Phys. 74, 405 (1991).
[25] D.C. Williamson and G. Jackson, J. Chem. Phys. 108, 10294 (1998).
[26] J.W. Perram et al., Phys. Rev. E 54, 6565 (1996).
[27] D.F. Rogers and J.A. Adams, Mathematical Elements for Computer Graphics, 2nd ed. (McGraw-Hill, Boston, 1989).
[28] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1990).
[29] R. Berardi, S. Orlandi, D.J. Photinos, A.G. Vanakaras, and C. Zannoni, Phys. Chem. Chem. Phys. 4, 770 (2002).
[30] D. Frenkel and B.M. Mulder, Mol. Phys. 55, 1171 (1985).

